MakeItFrom.com
Menu (ESC)

C63600 Bronze vs. S82011 Stainless Steel

C63600 bronze belongs to the copper alloys classification, while S82011 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C63600 bronze and the bottom bar is S82011 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 30 to 66
34
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 42
78
Shear Strength, MPa 320 to 360
490
Tensile Strength: Ultimate (UTS), MPa 410 to 540
730
Tensile Strength: Yield (Proof), MPa 150 to 260
510

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 210
1010
Melting Completion (Liquidus), °C 1030
1420
Melting Onset (Solidus), °C 980
1380
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 57
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
12
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 45
37
Embodied Water, L/kg 340
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 290
220
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 300
660
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 18
27
Strength to Weight: Bending, points 14 to 17
24
Thermal Diffusivity, mm2/s 16
4.0
Thermal Shock Resistance, points 15 to 20
20

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 93 to 96.3
0 to 0.5
Iron (Fe), % 0 to 0.15
68.6 to 76.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
2.0 to 3.0
Molybdenum (Mo), % 0
0.1 to 1.0
Nickel (Ni), % 0 to 0.15
1.0 to 2.0
Nitrogen (N), % 0
0.15 to 0.27
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.7 to 1.3
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0