MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. A356.0 Aluminum

C64200 bronze belongs to the copper alloys classification, while A356.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C64200 bronze and the bottom bar is A356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 14 to 35
3.0 to 6.0
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
26
Tensile Strength: Ultimate (UTS), MPa 540 to 640
160 to 270
Tensile Strength: Yield (Proof), MPa 230 to 320
83 to 200

Thermal Properties

Latent Heat of Fusion, J/g 250
500
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 1000
610
Melting Onset (Solidus), °C 980
570
Specific Heat Capacity, J/kg-K 430
900
Thermal Conductivity, W/m-K 45
150
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
40
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.5
Density, g/cm3 8.3
2.6
Embodied Carbon, kg CO2/kg material 3.0
8.0
Embodied Energy, MJ/kg 50
150
Embodied Water, L/kg 370
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
4.8 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
49 to 300
Stiffness to Weight: Axial, points 7.5
15
Stiffness to Weight: Bending, points 19
53
Strength to Weight: Axial, points 18 to 21
17 to 29
Strength to Weight: Bending, points 18 to 20
25 to 36
Thermal Diffusivity, mm2/s 13
64
Thermal Shock Resistance, points 20 to 23
7.6 to 13

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
91.1 to 93.3
Arsenic (As), % 0 to 0.15
0
Copper (Cu), % 88.2 to 92.2
0 to 0.2
Iron (Fe), % 0 to 0.3
0 to 0.2
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 0.1
0 to 0.1
Nickel (Ni), % 0 to 0.25
0
Silicon (Si), % 1.5 to 2.2
6.5 to 7.5
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.5
0 to 0.1
Residuals, % 0
0 to 0.15