MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. ASTM A182 Grade F911

C64200 bronze belongs to the copper alloys classification, while ASTM A182 grade F911 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is ASTM A182 grade F911.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 35
20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 330 to 390
430
Tensile Strength: Ultimate (UTS), MPa 540 to 640
690
Tensile Strength: Yield (Proof), MPa 230 to 320
500

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 210
600
Melting Completion (Liquidus), °C 1000
1480
Melting Onset (Solidus), °C 980
1440
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 45
26
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
10

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.5
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.0
2.8
Embodied Energy, MJ/kg 50
40
Embodied Water, L/kg 370
90

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
130
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
650
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 21
24
Strength to Weight: Bending, points 18 to 20
22
Thermal Diffusivity, mm2/s 13
6.9
Thermal Shock Resistance, points 20 to 23
19

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0 to 0.020
Arsenic (As), % 0 to 0.15
0
Boron (B), % 0
0.00030 to 0.0060
Carbon (C), % 0
0.090 to 0.13
Chromium (Cr), % 0
8.5 to 9.5
Copper (Cu), % 88.2 to 92.2
0
Iron (Fe), % 0 to 0.3
86.2 to 88.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.25
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.040 to 0.090
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 1.5 to 2.2
0.1 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
0.9 to 1.1
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 0.5
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.5
0