MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. ASTM A387 Grade 9 Steel

C64200 bronze belongs to the copper alloys classification, while ASTM A387 grade 9 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is ASTM A387 grade 9 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 35
20 to 21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
75
Shear Strength, MPa 330 to 390
310 to 380
Tensile Strength: Ultimate (UTS), MPa 540 to 640
500 to 600
Tensile Strength: Yield (Proof), MPa 230 to 320
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 210
600
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 980
1410
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 45
26
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
10

Otherwise Unclassified Properties

Base Metal Price, % relative 29
6.5
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.1
Embodied Energy, MJ/kg 50
28
Embodied Water, L/kg 370
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
83 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
140 to 310
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 21
18 to 21
Strength to Weight: Bending, points 18 to 20
18 to 20
Thermal Diffusivity, mm2/s 13
6.9
Thermal Shock Resistance, points 20 to 23
14 to 17

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 88.2 to 92.2
0
Iron (Fe), % 0 to 0.3
87.1 to 90.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 1.5 to 2.2
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.040
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0