MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. ASTM Grade LCC Steel

C64200 bronze belongs to the copper alloys classification, while ASTM grade LCC steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is ASTM grade LCC steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 35
25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
72
Tensile Strength: Ultimate (UTS), MPa 540 to 640
570
Tensile Strength: Yield (Proof), MPa 230 to 320
310

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 980
1410
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 45
49
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.8
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 50
18
Embodied Water, L/kg 370
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
120
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
260
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 21
20
Strength to Weight: Bending, points 18 to 20
20
Thermal Diffusivity, mm2/s 13
13
Thermal Shock Resistance, points 20 to 23
17

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.25
Copper (Cu), % 88.2 to 92.2
0
Iron (Fe), % 0 to 0.3
96.9 to 100
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0 to 1.2
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.5 to 2.2
0 to 0.6
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 1.0