MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. AWS E318

C64200 bronze belongs to the copper alloys classification, while AWS E318 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is AWS E318.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14 to 35
29
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
78
Tensile Strength: Ultimate (UTS), MPa 540 to 640
620

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Melting Completion (Liquidus), °C 1000
1440
Melting Onset (Solidus), °C 980
1400
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 45
15
Thermal Expansion, µm/m-K 18
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
23
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.0
4.4
Embodied Energy, MJ/kg 50
62
Embodied Water, L/kg 370
160

Common Calculations

Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 21
22
Strength to Weight: Bending, points 18 to 20
20
Thermal Diffusivity, mm2/s 13
4.0
Thermal Shock Resistance, points 20 to 23
16

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 88.2 to 92.2
0 to 0.75
Iron (Fe), % 0 to 0.3
57.6 to 69.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.25
11 to 14
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.5 to 2.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0