MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. AWS E80C-B8

C64200 bronze belongs to the copper alloys classification, while AWS E80C-B8 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is AWS E80C-B8.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 35
19
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
75
Tensile Strength: Ultimate (UTS), MPa 540 to 640
620
Tensile Strength: Yield (Proof), MPa 230 to 320
540

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 980
1410
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 45
25
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
9.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
11

Otherwise Unclassified Properties

Base Metal Price, % relative 29
6.5
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.1
Embodied Energy, MJ/kg 50
28
Embodied Water, L/kg 370
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
110
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
740
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 21
22
Strength to Weight: Bending, points 18 to 20
21
Thermal Diffusivity, mm2/s 13
6.9
Thermal Shock Resistance, points 20 to 23
17

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 88.2 to 92.2
0 to 0.35
Iron (Fe), % 0 to 0.3
85.5 to 90.6
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0.4 to 1.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0 to 0.25
0 to 0.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 1.5 to 2.2
0.25 to 0.6
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.5