MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. AWS ER100S-1

C64200 bronze belongs to the copper alloys classification, while AWS ER100S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is AWS ER100S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 35
18
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 540 to 640
770
Tensile Strength: Yield (Proof), MPa 230 to 320
700

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 980
1410
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 45
49
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
3.6
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.8
Embodied Energy, MJ/kg 50
24
Embodied Water, L/kg 370
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
130
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
1290
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 21
27
Strength to Weight: Bending, points 18 to 20
24
Thermal Diffusivity, mm2/s 13
13
Thermal Shock Resistance, points 20 to 23
23

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0 to 0.1
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 88.2 to 92.2
0 to 0.25
Iron (Fe), % 0 to 0.3
93.5 to 96.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
1.3 to 1.8
Molybdenum (Mo), % 0
0.25 to 0.55
Nickel (Ni), % 0 to 0.25
1.4 to 2.1
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 1.5 to 2.2
0.2 to 0.55
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.5
0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5