MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. EN 1.0214 Steel

C64200 bronze belongs to the copper alloys classification, while EN 1.0214 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is EN 1.0214 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 35
12 to 31
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 330 to 390
250 to 290
Tensile Strength: Ultimate (UTS), MPa 540 to 640
330 to 460
Tensile Strength: Yield (Proof), MPa 230 to 320
210 to 360

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 1000
1470
Melting Onset (Solidus), °C 980
1420
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 45
53
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.8
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 50
18
Embodied Water, L/kg 370
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
34 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
120 to 340
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 21
12 to 16
Strength to Weight: Bending, points 18 to 20
14 to 17
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 20 to 23
11 to 14

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0.020 to 0.060
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0.080 to 0.12
Copper (Cu), % 88.2 to 92.2
0
Iron (Fe), % 0 to 0.3
99.17 to 99.6
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.5
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 1.5 to 2.2
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0