MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. EN 1.4518 Stainless Steel

C64200 bronze belongs to the copper alloys classification, while EN 1.4518 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is EN 1.4518 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14 to 35
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 540 to 640
490
Tensile Strength: Yield (Proof), MPa 230 to 320
210

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 210
1000
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 980
1400
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 45
15
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
20
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.0
4.0
Embodied Energy, MJ/kg 50
55
Embodied Water, L/kg 370
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
140
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
100
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 21
17
Strength to Weight: Bending, points 18 to 20
18
Thermal Diffusivity, mm2/s 13
4.1
Thermal Shock Resistance, points 20 to 23
14

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 88.2 to 92.2
0
Iron (Fe), % 0 to 0.3
61.4 to 70
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0 to 0.25
9.0 to 12
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.5 to 2.2
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0