MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. EN 1.4606 Stainless Steel

C64200 bronze belongs to the copper alloys classification, while EN 1.4606 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is EN 1.4606 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 35
23 to 39
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
75
Shear Strength, MPa 330 to 390
410 to 640
Tensile Strength: Ultimate (UTS), MPa 540 to 640
600 to 1020
Tensile Strength: Yield (Proof), MPa 230 to 320
280 to 630

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 210
910
Melting Completion (Liquidus), °C 1000
1430
Melting Onset (Solidus), °C 980
1380
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 45
14
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
26
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.0
6.0
Embodied Energy, MJ/kg 50
87
Embodied Water, L/kg 370
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
200 to 1010
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 21
21 to 36
Strength to Weight: Bending, points 18 to 20
20 to 28
Thermal Diffusivity, mm2/s 13
3.7
Thermal Shock Resistance, points 20 to 23
21 to 35

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0 to 0.35
Arsenic (As), % 0 to 0.15
0
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13 to 16
Copper (Cu), % 88.2 to 92.2
0
Iron (Fe), % 0 to 0.3
49.2 to 59
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0 to 0.25
24 to 27
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 1.5 to 2.2
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0