MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. EN 2.4663 Nickel

C64200 bronze belongs to the copper alloys classification, while EN 2.4663 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is EN 2.4663 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 14 to 35
40
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
81
Shear Strength, MPa 330 to 390
540
Tensile Strength: Ultimate (UTS), MPa 540 to 640
780
Tensile Strength: Yield (Proof), MPa 230 to 320
310

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 210
1010
Melting Completion (Liquidus), °C 1000
1430
Melting Onset (Solidus), °C 980
1380
Specific Heat Capacity, J/kg-K 430
450
Thermal Conductivity, W/m-K 45
13
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
75
Density, g/cm3 8.3
8.6
Embodied Carbon, kg CO2/kg material 3.0
11
Embodied Energy, MJ/kg 50
140
Embodied Water, L/kg 370
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
250
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
230
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 18 to 21
25
Strength to Weight: Bending, points 18 to 20
22
Thermal Diffusivity, mm2/s 13
3.5
Thermal Shock Resistance, points 20 to 23
22

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0.7 to 1.4
Arsenic (As), % 0 to 0.15
0
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
11 to 14
Copper (Cu), % 88.2 to 92.2
0 to 0.5
Iron (Fe), % 0 to 0.3
0 to 2.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0 to 0.2
Molybdenum (Mo), % 0
8.5 to 10
Nickel (Ni), % 0 to 0.25
48 to 59.6
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 1.5 to 2.2
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0.2 to 0.6
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0