MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. EN 2.4879 Cast Nickel

C64200 bronze belongs to the copper alloys classification, while EN 2.4879 cast nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is EN 2.4879 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14 to 35
3.4
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
80
Tensile Strength: Ultimate (UTS), MPa 540 to 640
490
Tensile Strength: Yield (Proof), MPa 230 to 320
270

Thermal Properties

Latent Heat of Fusion, J/g 250
330
Maximum Temperature: Mechanical, °C 210
1150
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 980
1400
Specific Heat Capacity, J/kg-K 430
460
Thermal Conductivity, W/m-K 45
11
Thermal Expansion, µm/m-K 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 29
55
Density, g/cm3 8.3
8.5
Embodied Carbon, kg CO2/kg material 3.0
8.3
Embodied Energy, MJ/kg 50
120
Embodied Water, L/kg 370
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
14
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
180
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 18 to 21
16
Strength to Weight: Bending, points 18 to 20
16
Thermal Diffusivity, mm2/s 13
2.8
Thermal Shock Resistance, points 20 to 23
13

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0.35 to 0.55
Chromium (Cr), % 0
27 to 30
Copper (Cu), % 88.2 to 92.2
0
Iron (Fe), % 0 to 0.3
9.4 to 20.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.25
47 to 50
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.5 to 2.2
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0