MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. EN AC-42200 Aluminum

C64200 bronze belongs to the copper alloys classification, while EN AC-42200 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C64200 bronze and the bottom bar is EN AC-42200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 14 to 35
3.0 to 6.7
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
26
Tensile Strength: Ultimate (UTS), MPa 540 to 640
320
Tensile Strength: Yield (Proof), MPa 230 to 320
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 250
500
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 1000
610
Melting Onset (Solidus), °C 980
600
Specific Heat Capacity, J/kg-K 430
910
Thermal Conductivity, W/m-K 45
150
Thermal Expansion, µm/m-K 18
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
40
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.5
Density, g/cm3 8.3
2.6
Embodied Carbon, kg CO2/kg material 3.0
8.0
Embodied Energy, MJ/kg 50
150
Embodied Water, L/kg 370
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
9.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
410 to 490
Stiffness to Weight: Axial, points 7.5
15
Stiffness to Weight: Bending, points 19
53
Strength to Weight: Axial, points 18 to 21
34 to 35
Strength to Weight: Bending, points 18 to 20
40 to 41
Thermal Diffusivity, mm2/s 13
66
Thermal Shock Resistance, points 20 to 23
15

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
91 to 93.1
Arsenic (As), % 0 to 0.15
0
Copper (Cu), % 88.2 to 92.2
0 to 0.050
Iron (Fe), % 0 to 0.3
0 to 0.19
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0.45 to 0.7
Manganese (Mn), % 0 to 0.1
0 to 0.1
Nickel (Ni), % 0 to 0.25
0
Silicon (Si), % 1.5 to 2.2
6.5 to 7.5
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.5
0 to 0.070
Residuals, % 0
0 to 0.1