MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. CC482K Bronze

Both C64200 bronze and CC482K bronze are copper alloys. They have 86% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is CC482K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 14 to 35
5.6
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 42
40
Tensile Strength: Ultimate (UTS), MPa 540 to 640
300
Tensile Strength: Yield (Proof), MPa 230 to 320
160

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 210
160
Melting Completion (Liquidus), °C 1000
980
Melting Onset (Solidus), °C 980
860
Specific Heat Capacity, J/kg-K 430
360
Thermal Conductivity, W/m-K 45
64
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
10
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
10

Otherwise Unclassified Properties

Base Metal Price, % relative 29
36
Density, g/cm3 8.3
8.8
Embodied Carbon, kg CO2/kg material 3.0
3.8
Embodied Energy, MJ/kg 50
62
Embodied Water, L/kg 370
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
14
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
120
Stiffness to Weight: Axial, points 7.5
6.8
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 18 to 21
9.5
Strength to Weight: Bending, points 18 to 20
11
Thermal Diffusivity, mm2/s 13
20
Thermal Shock Resistance, points 20 to 23
11

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0 to 0.010
Antimony (Sb), % 0
0 to 0.2
Arsenic (As), % 0 to 0.15
0
Copper (Cu), % 88.2 to 92.2
83.5 to 87
Iron (Fe), % 0 to 0.3
0 to 0.2
Lead (Pb), % 0 to 0.050
0.7 to 2.5
Manganese (Mn), % 0 to 0.1
0 to 0.2
Nickel (Ni), % 0 to 0.25
0 to 2.0
Phosphorus (P), % 0
0 to 0.4
Silicon (Si), % 1.5 to 2.2
0 to 0.010
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0 to 0.2
10.5 to 12.5
Zinc (Zn), % 0 to 0.5
0 to 2.0
Residuals, % 0 to 0.5
0