MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. Grade 12 Titanium

C64200 bronze belongs to the copper alloys classification, while grade 12 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is grade 12 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 14 to 35
21
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 42
39
Shear Strength, MPa 330 to 390
330
Tensile Strength: Ultimate (UTS), MPa 540 to 640
530
Tensile Strength: Yield (Proof), MPa 230 to 320
410

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 210
320
Melting Completion (Liquidus), °C 1000
1660
Melting Onset (Solidus), °C 980
1610
Specific Heat Capacity, J/kg-K 430
540
Thermal Conductivity, W/m-K 45
21
Thermal Expansion, µm/m-K 18
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
37
Density, g/cm3 8.3
4.5
Embodied Carbon, kg CO2/kg material 3.0
31
Embodied Energy, MJ/kg 50
500
Embodied Water, L/kg 370
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
110
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
770
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 18 to 21
32
Strength to Weight: Bending, points 18 to 20
32
Thermal Diffusivity, mm2/s 13
8.5
Thermal Shock Resistance, points 20 to 23
37

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 88.2 to 92.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.3
0 to 0.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0
Molybdenum (Mo), % 0
0.2 to 0.4
Nickel (Ni), % 0 to 0.25
0.6 to 0.9
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Silicon (Si), % 1.5 to 2.2
0
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
97.6 to 99.2
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.4