MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. C14300 Copper

Both C64200 bronze and C14300 copper are copper alloys. They have a moderately high 90% of their average alloy composition in common.

For each property being compared, the top bar is C64200 bronze and the bottom bar is C14300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 14 to 35
2.0 to 42
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 42
43
Shear Strength, MPa 330 to 390
150 to 260
Tensile Strength: Ultimate (UTS), MPa 540 to 640
220 to 460
Tensile Strength: Yield (Proof), MPa 230 to 320
76 to 430

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 210
220
Melting Completion (Liquidus), °C 1000
1080
Melting Onset (Solidus), °C 980
1050
Specific Heat Capacity, J/kg-K 430
390
Thermal Conductivity, W/m-K 45
380
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
96
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
96

Otherwise Unclassified Properties

Base Metal Price, % relative 29
31
Density, g/cm3 8.3
9.0
Embodied Carbon, kg CO2/kg material 3.0
2.6
Embodied Energy, MJ/kg 50
41
Embodied Water, L/kg 370
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
9.0 to 72
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
25 to 810
Stiffness to Weight: Axial, points 7.5
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 18 to 21
6.8 to 14
Strength to Weight: Bending, points 18 to 20
9.1 to 15
Thermal Diffusivity, mm2/s 13
110
Thermal Shock Resistance, points 20 to 23
7.8 to 16

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Cadmium (Cd), % 0
0.050 to 0.15
Copper (Cu), % 88.2 to 92.2
99.9 to 99.95
Iron (Fe), % 0 to 0.3
0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.25
0
Silicon (Si), % 1.5 to 2.2
0
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0