MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. N08028 Stainless Steel

C64200 bronze belongs to the copper alloys classification, while N08028 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is N08028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14 to 35
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
80
Shear Strength, MPa 330 to 390
400
Tensile Strength: Ultimate (UTS), MPa 540 to 640
570
Tensile Strength: Yield (Proof), MPa 230 to 320
240

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 1000
1420
Melting Onset (Solidus), °C 980
1370
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 45
12
Thermal Expansion, µm/m-K 18
16

Otherwise Unclassified Properties

Base Metal Price, % relative 29
37
Density, g/cm3 8.3
8.1
Embodied Carbon, kg CO2/kg material 3.0
6.4
Embodied Energy, MJ/kg 50
89
Embodied Water, L/kg 370
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
210
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
140
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 21
19
Strength to Weight: Bending, points 18 to 20
19
Thermal Diffusivity, mm2/s 13
3.2
Thermal Shock Resistance, points 20 to 23
12

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 88.2 to 92.2
0.6 to 1.4
Iron (Fe), % 0 to 0.3
29 to 40.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0 to 2.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.25
30 to 34
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.5 to 2.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0