MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. S30600 Stainless Steel

C64200 bronze belongs to the copper alloys classification, while S30600 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is S30600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 35
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 330 to 390
430
Tensile Strength: Ultimate (UTS), MPa 540 to 640
610
Tensile Strength: Yield (Proof), MPa 230 to 320
270

Thermal Properties

Latent Heat of Fusion, J/g 250
350
Maximum Temperature: Mechanical, °C 210
950
Melting Completion (Liquidus), °C 1000
1380
Melting Onset (Solidus), °C 980
1330
Specific Heat Capacity, J/kg-K 430
490
Thermal Conductivity, W/m-K 45
14
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
19
Density, g/cm3 8.3
7.6
Embodied Carbon, kg CO2/kg material 3.0
3.6
Embodied Energy, MJ/kg 50
51
Embodied Water, L/kg 370
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
220
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
190
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 21
22
Strength to Weight: Bending, points 18 to 20
21
Thermal Diffusivity, mm2/s 13
3.7
Thermal Shock Resistance, points 20 to 23
14

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.018
Chromium (Cr), % 0
17 to 18.5
Copper (Cu), % 88.2 to 92.2
0 to 0.5
Iron (Fe), % 0 to 0.3
58.9 to 65.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.25
14 to 15.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 1.5 to 2.2
3.7 to 4.3
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0