MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. S31100 Stainless Steel

C64200 bronze belongs to the copper alloys classification, while S31100 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14 to 35
4.5
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 42
79
Shear Strength, MPa 330 to 390
580
Tensile Strength: Ultimate (UTS), MPa 540 to 640
1000
Tensile Strength: Yield (Proof), MPa 230 to 320
710

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 1000
1420
Melting Onset (Solidus), °C 980
1380
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 45
16
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
16
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.0
3.1
Embodied Energy, MJ/kg 50
44
Embodied Water, L/kg 370
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
40
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
1240
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 21
36
Strength to Weight: Bending, points 18 to 20
29
Thermal Diffusivity, mm2/s 13
4.2
Thermal Shock Resistance, points 20 to 23
28

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
25 to 27
Copper (Cu), % 88.2 to 92.2
0
Iron (Fe), % 0 to 0.3
63.6 to 69
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0 to 0.25
6.0 to 7.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 1.5 to 2.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0