MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. S44725 Stainless Steel

C64200 bronze belongs to the copper alloys classification, while S44725 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is S44725 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14 to 35
22
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 42
81
Shear Strength, MPa 330 to 390
320
Tensile Strength: Ultimate (UTS), MPa 540 to 640
500
Tensile Strength: Yield (Proof), MPa 230 to 320
310

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 980
1410
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 45
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
15
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.0
3.1
Embodied Energy, MJ/kg 50
44
Embodied Water, L/kg 370
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
99
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
240
Stiffness to Weight: Axial, points 7.5
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 21
18
Strength to Weight: Bending, points 18 to 20
18
Thermal Diffusivity, mm2/s 13
4.6
Thermal Shock Resistance, points 20 to 23
16

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
25 to 28.5
Copper (Cu), % 88.2 to 92.2
0
Iron (Fe), % 0 to 0.3
67.6 to 73.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0 to 0.4
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0 to 0.25
0 to 0.3
Niobium (Nb), % 0
0 to 0.26
Nitrogen (N), % 0
0 to 0.018
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.5 to 2.2
0 to 0.040
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0 to 0.26
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0