MakeItFrom.com
Menu (ESC)

C64200 Bronze vs. S82441 Stainless Steel

C64200 bronze belongs to the copper alloys classification, while S82441 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64200 bronze and the bottom bar is S82441 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14 to 35
28
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 42
79
Shear Strength, MPa 330 to 390
490
Tensile Strength: Ultimate (UTS), MPa 540 to 640
760
Tensile Strength: Yield (Proof), MPa 230 to 320
550

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 210
1090
Melting Completion (Liquidus), °C 1000
1430
Melting Onset (Solidus), °C 980
1380
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 45
15
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
16
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.0
3.2
Embodied Energy, MJ/kg 50
45
Embodied Water, L/kg 370
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 170
190
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 470
740
Stiffness to Weight: Axial, points 7.5
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 21
27
Strength to Weight: Bending, points 18 to 20
24
Thermal Diffusivity, mm2/s 13
3.9
Thermal Shock Resistance, points 20 to 23
21

Alloy Composition

Aluminum (Al), % 6.3 to 7.6
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 88.2 to 92.2
0.1 to 0.8
Iron (Fe), % 0 to 0.3
62.6 to 70.2
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0 to 0.25
3.0 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 1.5 to 2.2
0 to 0.7
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0