MakeItFrom.com
Menu (ESC)

C64210 Bronze vs. AISI 414 Stainless Steel

C64210 bronze belongs to the copper alloys classification, while AISI 414 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64210 bronze and the bottom bar is AISI 414 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 35
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 380
550 to 590
Tensile Strength: Ultimate (UTS), MPa 570
900 to 960
Tensile Strength: Yield (Proof), MPa 290
700 to 790

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 210
750
Melting Completion (Liquidus), °C 1040
1440
Melting Onset (Solidus), °C 990
1400
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 48
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
8.0
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.1
Embodied Energy, MJ/kg 49
29
Embodied Water, L/kg 360
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 360
1260 to 1590
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19
32 to 34
Strength to Weight: Bending, points 18
27 to 28
Thermal Diffusivity, mm2/s 13
6.7
Thermal Shock Resistance, points 21
33 to 35

Alloy Composition

Aluminum (Al), % 6.3 to 7.0
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 89 to 92.2
0
Iron (Fe), % 0 to 0.3
81.8 to 87.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0 to 0.25
1.3 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.5 to 2.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0