MakeItFrom.com
Menu (ESC)

C64210 Bronze vs. ASTM A369 Grade FP9

C64210 bronze belongs to the copper alloys classification, while ASTM A369 grade FP9 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C64210 bronze and the bottom bar is ASTM A369 grade FP9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 35
20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
75
Shear Strength, MPa 380
300
Tensile Strength: Ultimate (UTS), MPa 570
470
Tensile Strength: Yield (Proof), MPa 290
240

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 210
600
Melting Completion (Liquidus), °C 1040
1450
Melting Onset (Solidus), °C 990
1410
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 48
26
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 14
10

Otherwise Unclassified Properties

Base Metal Price, % relative 29
6.5
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.0
Embodied Energy, MJ/kg 49
28
Embodied Water, L/kg 360
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
80
Resilience: Unit (Modulus of Resilience), kJ/m3 360
140
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19
17
Strength to Weight: Bending, points 18
17
Thermal Diffusivity, mm2/s 13
6.9
Thermal Shock Resistance, points 21
13

Alloy Composition

Aluminum (Al), % 6.3 to 7.0
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 89 to 92.2
0
Iron (Fe), % 0 to 0.3
87.1 to 90.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.5 to 2.0
0.5 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0