MakeItFrom.com
Menu (ESC)

C64210 Bronze vs. SAE-AISI 4140 Steel

C64210 bronze belongs to the copper alloys classification, while SAE-AISI 4140 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C64210 bronze and the bottom bar is SAE-AISI 4140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 35
11 to 26
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 380
410 to 660
Tensile Strength: Ultimate (UTS), MPa 570
690 to 1080
Tensile Strength: Yield (Proof), MPa 290
590 to 990

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 210
420
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 990
1420
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 48
43
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
2.4
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.5
Embodied Energy, MJ/kg 49
20
Embodied Water, L/kg 360
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
74 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 360
920 to 2590
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19
25 to 38
Strength to Weight: Bending, points 18
22 to 30
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 21
20 to 32

Alloy Composition

Aluminum (Al), % 6.3 to 7.0
0
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 89 to 92.2
0
Iron (Fe), % 0 to 0.3
96.8 to 97.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0.75 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 1.5 to 2.0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0