MakeItFrom.com
Menu (ESC)

C64210 Bronze vs. C70260 Copper

Both C64210 bronze and C70260 copper are copper alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C64210 bronze and the bottom bar is C70260 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 35
9.5 to 19
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 42
44
Shear Strength, MPa 380
320 to 450
Tensile Strength: Ultimate (UTS), MPa 570
520 to 760
Tensile Strength: Yield (Proof), MPa 290
410 to 650

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 210
200
Melting Completion (Liquidus), °C 1040
1060
Melting Onset (Solidus), °C 990
1040
Specific Heat Capacity, J/kg-K 430
390
Thermal Conductivity, W/m-K 48
160
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
40 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 14
40 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 29
31
Density, g/cm3 8.4
8.9
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 49
43
Embodied Water, L/kg 360
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
46 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 360
710 to 1810
Stiffness to Weight: Axial, points 7.4
7.3
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 19
16 to 24
Strength to Weight: Bending, points 18
16 to 21
Thermal Diffusivity, mm2/s 13
45
Thermal Shock Resistance, points 21
18 to 27

Alloy Composition

Aluminum (Al), % 6.3 to 7.0
0
Arsenic (As), % 0 to 0.15
0
Copper (Cu), % 89 to 92.2
95.8 to 98.8
Iron (Fe), % 0 to 0.3
0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.25
1.0 to 3.0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 1.5 to 2.0
0.2 to 0.7
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.5