MakeItFrom.com
Menu (ESC)

C64210 Bronze vs. S13800 Stainless Steel

C64210 bronze belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C64210 bronze and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 35
11 to 18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 380
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 570
980 to 1730
Tensile Strength: Yield (Proof), MPa 290
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 210
810
Melting Completion (Liquidus), °C 1040
1450
Melting Onset (Solidus), °C 990
1410
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 48
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
15
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 3.0
3.4
Embodied Energy, MJ/kg 49
46
Embodied Water, L/kg 360
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 360
1090 to 5490
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19
35 to 61
Strength to Weight: Bending, points 18
28 to 41
Thermal Diffusivity, mm2/s 13
4.3
Thermal Shock Resistance, points 21
33 to 58

Alloy Composition

Aluminum (Al), % 6.3 to 7.0
0.9 to 1.4
Arsenic (As), % 0 to 0.15
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 89 to 92.2
0
Iron (Fe), % 0 to 0.3
73.6 to 77.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.1
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.25
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 1.5 to 2.0
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0