MakeItFrom.com
Menu (ESC)

C64700 Bronze vs. ASTM A356 Grade 2

C64700 bronze belongs to the copper alloys classification, while ASTM A356 grade 2 belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C64700 bronze and the bottom bar is ASTM A356 grade 2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 9.0
25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 660
510
Tensile Strength: Yield (Proof), MPa 560
270

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 200
410
Melting Completion (Liquidus), °C 1090
1470
Melting Onset (Solidus), °C 1030
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 210
51
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 38
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.4
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 43
20
Embodied Water, L/kg 310
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
190
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 59
14
Thermal Shock Resistance, points 24
15

Alloy Composition

Carbon (C), % 0
0 to 0.25
Copper (Cu), % 95.8 to 98
0
Iron (Fe), % 0 to 0.1
97.7 to 99.55
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 0.7
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 1.6 to 2.2
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.4 to 0.8
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0