MakeItFrom.com
Menu (ESC)

C64700 Bronze vs. N08366 Stainless Steel

C64700 bronze belongs to the copper alloys classification, while N08366 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64700 bronze and the bottom bar is N08366 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 9.0
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
80
Shear Strength, MPa 390
390
Tensile Strength: Ultimate (UTS), MPa 660
590
Tensile Strength: Yield (Proof), MPa 560
240

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 210
13
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 38
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
33
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 2.7
6.2
Embodied Energy, MJ/kg 43
84
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
160
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
150
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 21
20
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 59
3.4
Thermal Shock Resistance, points 24
13

Alloy Composition

Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 95.8 to 98
0
Iron (Fe), % 0 to 0.1
42.4 to 50.5
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 1.6 to 2.2
23.5 to 25.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0