MakeItFrom.com
Menu (ESC)

C64700 Bronze vs. S17400 Stainless Steel

C64700 bronze belongs to the copper alloys classification, while S17400 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C64700 bronze and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 9.0
11 to 21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
75
Shear Strength, MPa 390
570 to 830
Tensile Strength: Ultimate (UTS), MPa 660
910 to 1390
Tensile Strength: Yield (Proof), MPa 560
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 200
850
Melting Completion (Liquidus), °C 1090
1440
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 210
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 38
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
14
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 43
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
880 to 4060
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 21
32 to 49
Strength to Weight: Bending, points 19
27 to 35
Thermal Diffusivity, mm2/s 59
4.5
Thermal Shock Resistance, points 24
30 to 46

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 95.8 to 98
3.0 to 5.0
Iron (Fe), % 0 to 0.1
70.4 to 78.9
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 1.6 to 2.2
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0