MakeItFrom.com
Menu (ESC)

C64700 Bronze vs. S30530 Stainless Steel

C64700 bronze belongs to the copper alloys classification, while S30530 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64700 bronze and the bottom bar is S30530 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.0
46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Shear Strength, MPa 390
410
Tensile Strength: Ultimate (UTS), MPa 660
590
Tensile Strength: Yield (Proof), MPa 560
230

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 200
970
Melting Completion (Liquidus), °C 1090
1410
Melting Onset (Solidus), °C 1030
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 210
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 38
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
18
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 43
48
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
210
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
130
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 21
21
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 59
4.1
Thermal Shock Resistance, points 24
13

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 20.5
Copper (Cu), % 95.8 to 98
0.75 to 3.5
Iron (Fe), % 0 to 0.1
58.4 to 72.5
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 1.6 to 2.2
8.5 to 11.5
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.4 to 0.8
0.5 to 2.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0