MakeItFrom.com
Menu (ESC)

C64700 Bronze vs. S30815 Stainless Steel

C64700 bronze belongs to the copper alloys classification, while S30815 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C64700 bronze and the bottom bar is S30815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.0
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Shear Strength, MPa 390
480
Tensile Strength: Ultimate (UTS), MPa 660
680
Tensile Strength: Yield (Proof), MPa 560
350

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 200
1020
Melting Completion (Liquidus), °C 1090
1400
Melting Onset (Solidus), °C 1030
1360
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 210
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 38
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
17
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.3
Embodied Energy, MJ/kg 43
47
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
260
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
310
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 21
25
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 59
4.0
Thermal Shock Resistance, points 24
15

Alloy Composition

Carbon (C), % 0
0.050 to 0.1
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 95.8 to 98
0
Iron (Fe), % 0 to 0.1
62.8 to 68.4
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 1.6 to 2.2
10 to 12
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
1.4 to 2.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0