MakeItFrom.com
Menu (ESC)

C64700 Bronze vs. S32654 Stainless Steel

C64700 bronze belongs to the copper alloys classification, while S32654 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64700 bronze and the bottom bar is S32654 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 9.0
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
82
Shear Strength, MPa 390
590
Tensile Strength: Ultimate (UTS), MPa 660
850
Tensile Strength: Yield (Proof), MPa 560
490

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 210
11
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 38
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
34
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.7
6.4
Embodied Energy, MJ/kg 43
87
Embodied Water, L/kg 310
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
330
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
570
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 21
29
Strength to Weight: Bending, points 19
25
Thermal Diffusivity, mm2/s 59
2.9
Thermal Shock Resistance, points 24
19

Alloy Composition

Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 25
Copper (Cu), % 95.8 to 98
0.3 to 0.6
Iron (Fe), % 0 to 0.1
38.3 to 45.3
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 1.6 to 2.2
21 to 23
Nitrogen (N), % 0
0.45 to 0.55
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.4 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0