MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. 213.0 Aluminum

C64800 bronze belongs to the copper alloys classification, while 213.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C64800 bronze and the bottom bar is 213.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
73
Elongation at Break, % 8.0
1.5
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
28
Tensile Strength: Ultimate (UTS), MPa 640
190
Tensile Strength: Yield (Proof), MPa 630
130

Thermal Properties

Latent Heat of Fusion, J/g 220
410
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
670
Melting Onset (Solidus), °C 1030
480
Specific Heat Capacity, J/kg-K 390
850
Thermal Conductivity, W/m-K 260
130
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
34
Electrical Conductivity: Equal Weight (Specific), % IACS 66
94

Otherwise Unclassified Properties

Base Metal Price, % relative 33
11
Density, g/cm3 8.9
3.2
Embodied Carbon, kg CO2/kg material 2.7
7.7
Embodied Energy, MJ/kg 43
140
Embodied Water, L/kg 310
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
120
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
44
Strength to Weight: Axial, points 20
16
Strength to Weight: Bending, points 19
23
Thermal Diffusivity, mm2/s 75
49
Thermal Shock Resistance, points 23
8.0

Alloy Composition

Aluminum (Al), % 0
83.5 to 93
Chromium (Cr), % 0 to 0.090
0
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
6.0 to 8.0
Iron (Fe), % 0 to 1.0
0 to 1.2
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.6
Nickel (Ni), % 0 to 0.5
0 to 0.35
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 0.2 to 1.0
1.0 to 3.0
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.5
0 to 2.5
Residuals, % 0
0 to 0.5