MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. 4147 Aluminum

C64800 bronze belongs to the copper alloys classification, while 4147 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C64800 bronze and the bottom bar is 4147 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
72
Elongation at Break, % 8.0
3.3
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
27
Shear Strength, MPa 380
63
Tensile Strength: Ultimate (UTS), MPa 640
110
Tensile Strength: Yield (Proof), MPa 630
59

Thermal Properties

Latent Heat of Fusion, J/g 220
570
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1090
580
Melting Onset (Solidus), °C 1030
560
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 260
130
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
33
Electrical Conductivity: Equal Weight (Specific), % IACS 66
120

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.9
2.5
Embodied Carbon, kg CO2/kg material 2.7
7.7
Embodied Energy, MJ/kg 43
140
Embodied Water, L/kg 310
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
3.1
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
24
Stiffness to Weight: Axial, points 7.4
16
Stiffness to Weight: Bending, points 18
55
Strength to Weight: Axial, points 20
12
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 75
58
Thermal Shock Resistance, points 23
5.2

Alloy Composition

Aluminum (Al), % 0
85 to 88.9
Beryllium (Be), % 0
0 to 0.00030
Chromium (Cr), % 0 to 0.090
0
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0 to 0.25
Iron (Fe), % 0 to 1.0
0 to 0.8
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0.1 to 0.5
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 0.2 to 1.0
11 to 13
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0 to 0.2
Residuals, % 0
0 to 0.15