MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. 5026 Aluminum

C64800 bronze belongs to the copper alloys classification, while 5026 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C64800 bronze and the bottom bar is 5026 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 8.0
5.1 to 11
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
26
Shear Strength, MPa 380
150 to 180
Tensile Strength: Ultimate (UTS), MPa 640
260 to 320
Tensile Strength: Yield (Proof), MPa 630
120 to 250

Thermal Properties

Latent Heat of Fusion, J/g 220
400
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 1090
650
Melting Onset (Solidus), °C 1030
510
Specific Heat Capacity, J/kg-K 390
890
Thermal Conductivity, W/m-K 260
130
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
31
Electrical Conductivity: Equal Weight (Specific), % IACS 66
99

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.9
2.8
Embodied Carbon, kg CO2/kg material 2.7
8.9
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 310
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
15 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
100 to 440
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
49
Strength to Weight: Axial, points 20
26 to 32
Strength to Weight: Bending, points 19
33 to 37
Thermal Diffusivity, mm2/s 75
52
Thermal Shock Resistance, points 23
11 to 14

Alloy Composition

Aluminum (Al), % 0
88.2 to 94.7
Chromium (Cr), % 0 to 0.090
0 to 0.3
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0.1 to 0.8
Iron (Fe), % 0 to 1.0
0.2 to 1.0
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
3.9 to 4.9
Manganese (Mn), % 0
0.6 to 1.8
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 0.2 to 1.0
0.55 to 1.4
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.5
0 to 1.0
Zirconium (Zr), % 0
0 to 0.3
Residuals, % 0
0 to 0.15