MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. 5056 Aluminum

C64800 bronze belongs to the copper alloys classification, while 5056 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C64800 bronze and the bottom bar is 5056 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
67
Elongation at Break, % 8.0
4.9 to 31
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
25
Shear Strength, MPa 380
170 to 240
Tensile Strength: Ultimate (UTS), MPa 640
290 to 460
Tensile Strength: Yield (Proof), MPa 630
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 220
400
Maximum Temperature: Mechanical, °C 200
190
Melting Completion (Liquidus), °C 1090
640
Melting Onset (Solidus), °C 1030
570
Specific Heat Capacity, J/kg-K 390
910
Thermal Conductivity, W/m-K 260
130
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
29
Electrical Conductivity: Equal Weight (Specific), % IACS 66
99

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 2.7
9.0
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 310
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
12 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
170 to 1220
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
51
Strength to Weight: Axial, points 20
30 to 48
Strength to Weight: Bending, points 19
36 to 50
Thermal Diffusivity, mm2/s 75
53
Thermal Shock Resistance, points 23
13 to 20

Alloy Composition

Aluminum (Al), % 0
93 to 95.4
Chromium (Cr), % 0 to 0.090
0.050 to 0.2
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0 to 0.1
Iron (Fe), % 0 to 1.0
0 to 0.4
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
4.5 to 5.6
Manganese (Mn), % 0
0.050 to 0.2
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 0.2 to 1.0
0 to 0.3
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0 to 0.1
Residuals, % 0
0 to 0.15