MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. 6018 Aluminum

C64800 bronze belongs to the copper alloys classification, while 6018 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C64800 bronze and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 8.0
9.0 to 9.1
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
26
Shear Strength, MPa 380
170 to 180
Tensile Strength: Ultimate (UTS), MPa 640
290 to 300
Tensile Strength: Yield (Proof), MPa 630
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 220
400
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1090
640
Melting Onset (Solidus), °C 1030
570
Specific Heat Capacity, J/kg-K 390
890
Thermal Conductivity, W/m-K 260
170
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
44
Electrical Conductivity: Equal Weight (Specific), % IACS 66
140

Otherwise Unclassified Properties

Base Metal Price, % relative 33
10
Density, g/cm3 8.9
2.9
Embodied Carbon, kg CO2/kg material 2.7
8.2
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 310
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
360 to 380
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
48
Strength to Weight: Axial, points 20
28 to 29
Strength to Weight: Bending, points 19
34 to 35
Thermal Diffusivity, mm2/s 75
65
Thermal Shock Resistance, points 23
13

Alloy Composition

Aluminum (Al), % 0
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Chromium (Cr), % 0 to 0.090
0 to 0.1
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0.15 to 0.4
Iron (Fe), % 0 to 1.0
0 to 0.7
Lead (Pb), % 0 to 0.050
0.4 to 1.2
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0
0.3 to 0.8
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 0.2 to 1.0
0.5 to 1.2
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.5
0 to 0.3
Residuals, % 0
0 to 0.15