MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. ACI-ASTM CF3M Steel

C64800 bronze belongs to the copper alloys classification, while ACI-ASTM CF3M steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is ACI-ASTM CF3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0
55
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
78
Tensile Strength: Ultimate (UTS), MPa 640
520
Tensile Strength: Yield (Proof), MPa 630
260

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 1090
1440
Melting Onset (Solidus), °C 1030
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
16
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 66
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
19
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.8
Embodied Energy, MJ/kg 43
53
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
240
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
170
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 75
4.3
Thermal Shock Resistance, points 23
12

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.090
17 to 21
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0
Iron (Fe), % 0 to 1.0
59.9 to 72
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.5
9.0 to 13
Phosphorus (P), % 0 to 0.5
0 to 0.040
Silicon (Si), % 0.2 to 1.0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0