MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. AISI 410Cb Stainless Steel

C64800 bronze belongs to the copper alloys classification, while AISI 410Cb stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is AISI 410Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0
15
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Shear Strength, MPa 380
340 to 590
Tensile Strength: Ultimate (UTS), MPa 640
550 to 960
Tensile Strength: Yield (Proof), MPa 630
310 to 790

Thermal Properties

Latent Heat of Fusion, J/g 220
270
Maximum Temperature: Mechanical, °C 200
730
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
27
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 66
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
7.5
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 43
29
Embodied Water, L/kg 310
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
70 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
240 to 1600
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 20
20 to 35
Strength to Weight: Bending, points 19
19 to 28
Thermal Diffusivity, mm2/s 75
7.3
Thermal Shock Resistance, points 23
20 to 35

Alloy Composition

Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0 to 0.090
11 to 13
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0
Iron (Fe), % 0 to 1.0
84.5 to 89
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0
0.050 to 0.3
Phosphorus (P), % 0 to 0.5
0 to 0.040
Silicon (Si), % 0.2 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0