MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. AISI 420 Stainless Steel

C64800 bronze belongs to the copper alloys classification, while AISI 420 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is AISI 420 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0
8.0 to 15
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Shear Strength, MPa 380
420 to 1010
Tensile Strength: Ultimate (UTS), MPa 640
690 to 1720
Tensile Strength: Yield (Proof), MPa 630
380 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 200
620
Melting Completion (Liquidus), °C 1090
1510
Melting Onset (Solidus), °C 1030
1450
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
27
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 66
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
7.5
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 43
28
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
88 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
380 to 4410
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 20
25 to 62
Strength to Weight: Bending, points 19
22 to 41
Thermal Diffusivity, mm2/s 75
7.3
Thermal Shock Resistance, points 23
25 to 62

Alloy Composition

Carbon (C), % 0
0.15 to 0.4
Chromium (Cr), % 0 to 0.090
12 to 14
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0
Iron (Fe), % 0 to 1.0
82.3 to 87.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.5
0 to 0.75
Phosphorus (P), % 0 to 0.5
0 to 0.040
Silicon (Si), % 0.2 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0