MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. AWS E312

C64800 bronze belongs to the copper alloys classification, while AWS E312 belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is AWS E312.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0
25
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
80
Tensile Strength: Ultimate (UTS), MPa 640
740

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Melting Completion (Liquidus), °C 1090
1410
Melting Onset (Solidus), °C 1030
1360
Specific Heat Capacity, J/kg-K 390
480
Thermal Expansion, µm/m-K 17
15

Otherwise Unclassified Properties

Base Metal Price, % relative 33
20
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.6
Embodied Energy, MJ/kg 43
52
Embodied Water, L/kg 310
200

Common Calculations

Stiffness to Weight: Axial, points 7.4
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 20
27
Strength to Weight: Bending, points 19
24
Thermal Shock Resistance, points 23
18

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.090
28 to 32
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0 to 0.75
Iron (Fe), % 0 to 1.0
52.3 to 63.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.5 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.5
8.0 to 10.5
Phosphorus (P), % 0 to 0.5
0 to 0.040
Silicon (Si), % 0.2 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0