MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. AWS E430Nb

C64800 bronze belongs to the copper alloys classification, while AWS E430Nb belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is AWS E430Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 640
500

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
24
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 66
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 33
15
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 43
45
Embodied Water, L/kg 310
120

Common Calculations

Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 75
6.6
Thermal Shock Resistance, points 23
13

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.090
15 to 18
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0 to 0.75
Iron (Fe), % 0 to 1.0
76.2 to 84.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.5
0 to 0.6
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.5
0 to 0.040
Silicon (Si), % 0.2 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0