MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. EN 1.3967 Stainless Steel

C64800 bronze belongs to the copper alloys classification, while EN 1.3967 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is EN 1.3967 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0
22
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
79
Tensile Strength: Ultimate (UTS), MPa 640
690
Tensile Strength: Yield (Proof), MPa 630
350

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 200
1070
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 390
470
Thermal Expansion, µm/m-K 17
16

Otherwise Unclassified Properties

Base Metal Price, % relative 33
25
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
4.8
Embodied Energy, MJ/kg 43
66
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
310
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 20
24
Strength to Weight: Bending, points 19
22
Thermal Shock Resistance, points 23
15

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.090
20 to 21.5
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0
Iron (Fe), % 0 to 1.0
50.3 to 57.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
4.0 to 6.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0 to 0.5
15 to 17
Niobium (Nb), % 0
0 to 0.25
Nitrogen (N), % 0
0.2 to 0.35
Phosphorus (P), % 0 to 0.5
0 to 0.025
Silicon (Si), % 0.2 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0