MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. Grade 15 Titanium

C64800 bronze belongs to the copper alloys classification, while grade 15 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is grade 15 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 8.0
20
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 44
41
Shear Strength, MPa 380
340
Tensile Strength: Ultimate (UTS), MPa 640
540
Tensile Strength: Yield (Proof), MPa 630
430

Thermal Properties

Latent Heat of Fusion, J/g 220
420
Maximum Temperature: Mechanical, °C 200
320
Melting Completion (Liquidus), °C 1090
1660
Melting Onset (Solidus), °C 1030
1610
Specific Heat Capacity, J/kg-K 390
540
Thermal Conductivity, W/m-K 260
21
Thermal Expansion, µm/m-K 17
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 66
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 33
37
Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 2.7
32
Embodied Energy, MJ/kg 43
520
Embodied Water, L/kg 310
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
100
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
870
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 20
33
Strength to Weight: Bending, points 19
33
Thermal Diffusivity, mm2/s 75
8.4
Thermal Shock Resistance, points 23
41

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.090
0
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.0
0 to 0.3
Lead (Pb), % 0 to 0.050
0
Nickel (Ni), % 0 to 0.5
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.5
0
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 0.2 to 1.0
0
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
98.2 to 99.56
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.4