MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. Nickel 718

C64800 bronze belongs to the copper alloys classification, while nickel 718 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is nickel 718.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0
12 to 50
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
75
Shear Strength, MPa 380
660 to 950
Tensile Strength: Ultimate (UTS), MPa 640
930 to 1530
Tensile Strength: Yield (Proof), MPa 630
510 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1090
1340
Melting Onset (Solidus), °C 1030
1260
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 260
11
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 66
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
75
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 2.7
13
Embodied Energy, MJ/kg 43
190
Embodied Water, L/kg 310
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
140 to 390
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
660 to 4560
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 20
31 to 51
Strength to Weight: Bending, points 19
25 to 35
Thermal Diffusivity, mm2/s 75
3.0
Thermal Shock Resistance, points 23
27 to 44

Alloy Composition

Aluminum (Al), % 0
0.2 to 0.8
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.090
17 to 21
Cobalt (Co), % 1.0 to 3.0
0 to 1.0
Copper (Cu), % 92.4 to 98.8
0 to 0.3
Iron (Fe), % 0 to 1.0
11.1 to 24.6
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0 to 0.5
50 to 55
Niobium (Nb), % 0
4.8 to 5.5
Phosphorus (P), % 0 to 0.5
0 to 0.015
Silicon (Si), % 0.2 to 1.0
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
0.65 to 1.2
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0