MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. SAE-AISI 1045 Steel

C64800 bronze belongs to the copper alloys classification, while SAE-AISI 1045 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is SAE-AISI 1045 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0
13 to 18
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
72
Shear Strength, MPa 380
380 to 410
Tensile Strength: Ultimate (UTS), MPa 640
620 to 680
Tensile Strength: Yield (Proof), MPa 630
330 to 580

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
51
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 66
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 33
1.8
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 43
18
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
84 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
300 to 900
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 20
22 to 24
Strength to Weight: Bending, points 19
21 to 22
Thermal Diffusivity, mm2/s 75
14
Thermal Shock Resistance, points 23
20 to 22

Alloy Composition

Carbon (C), % 0
0.43 to 0.5
Chromium (Cr), % 0 to 0.090
0
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0
Iron (Fe), % 0 to 1.0
98.5 to 99
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.5
0 to 0.040
Silicon (Si), % 0.2 to 1.0
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0