MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. SAE-AISI 1084 Steel

C64800 bronze belongs to the copper alloys classification, while SAE-AISI 1084 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is SAE-AISI 1084 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0
11
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
72
Shear Strength, MPa 380
470 to 550
Tensile Strength: Ultimate (UTS), MPa 640
780 to 930
Tensile Strength: Yield (Proof), MPa 630
510 to 600

Thermal Properties

Latent Heat of Fusion, J/g 220
240
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
51
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 66
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 33
1.8
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 43
19
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
81 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
700 to 960
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 20
28 to 33
Strength to Weight: Bending, points 19
24 to 27
Thermal Diffusivity, mm2/s 75
14
Thermal Shock Resistance, points 23
25 to 30

Alloy Composition

Carbon (C), % 0
0.8 to 0.93
Chromium (Cr), % 0 to 0.090
0
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0
Iron (Fe), % 0 to 1.0
98.1 to 98.6
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.5
0 to 0.040
Silicon (Si), % 0.2 to 1.0
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0