MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. N08120 Nickel

C64800 bronze belongs to the copper alloys classification, while N08120 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
79
Shear Strength, MPa 380
470
Tensile Strength: Ultimate (UTS), MPa 640
700
Tensile Strength: Yield (Proof), MPa 630
310

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 1090
1420
Melting Onset (Solidus), °C 1030
1370
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
11
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 33
45
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 2.7
7.2
Embodied Energy, MJ/kg 43
100
Embodied Water, L/kg 310
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
190
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
240
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 20
24
Strength to Weight: Bending, points 19
21
Thermal Diffusivity, mm2/s 75
3.0
Thermal Shock Resistance, points 23
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0 to 0.090
23 to 27
Cobalt (Co), % 1.0 to 3.0
0 to 3.0
Copper (Cu), % 92.4 to 98.8
0 to 0.5
Iron (Fe), % 0 to 1.0
21 to 41.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 0 to 0.5
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0 to 0.5
0 to 0.040
Silicon (Si), % 0.2 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0