MakeItFrom.com
Menu (ESC)

C64800 Bronze vs. N08366 Stainless Steel

C64800 bronze belongs to the copper alloys classification, while N08366 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C64800 bronze and the bottom bar is N08366 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 8.0
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
80
Shear Strength, MPa 380
390
Tensile Strength: Ultimate (UTS), MPa 640
590
Tensile Strength: Yield (Proof), MPa 630
240

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 260
13
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 65
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 66
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 33
33
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 2.7
6.2
Embodied Energy, MJ/kg 43
84
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
160
Resilience: Unit (Modulus of Resilience), kJ/m3 1680
150
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 20
20
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 75
3.4
Thermal Shock Resistance, points 23
13

Alloy Composition

Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0 to 0.090
20 to 22
Cobalt (Co), % 1.0 to 3.0
0
Copper (Cu), % 92.4 to 98.8
0
Iron (Fe), % 0 to 1.0
42.4 to 50.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0 to 0.5
23.5 to 25.5
Phosphorus (P), % 0 to 0.5
0 to 0.040
Silicon (Si), % 0.2 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0